

    
      
          
            
  
Watch Do (1.1.2)

Watch Do is primarily a command line utility that allows you to monitor files
for changes using a variety of different methods (MD5 hash of the
file, ModificationTime, etc) and then perform actions based on these
changes.

The core Watch Do libraries can be used externally from the command line
utility to provide similar functionality for use in other scripts and programs.


Installation

To install Watch Do, ensure you have pip installed using your distributions
package manager and then run the following command:

pip install git+https://github.com/vimist/watch-do








Basic Usage

You can start making use of Watch Do right away! A basic Watch Do command can
be seen below, this watches all .py files recursively using the default
watcher (ModificationTime) and then runs make test in the
directory that Watch Do was launched in.

watch-do -w '**/*.py' -d 'make test'





Run watch-do --help for more information on what all of the different
command line switches do.


Note

The -r (--reglob) switch is often useful to maintain an up-to-date
list of files that trigger the doers to run.








Modules

This is the list of modules that Watch Do makes use of. All modules are
documented to make it easy to integrate within your own project.


Contents:


	Modules
	Watchers
	The Base Class

	Built-In Watchers





	Doers
	The Base Class

	Built-In Doers





	Doer Manager

	Watcher Manager

	Glob Manager

	Banner Builder

	Exceptions












Indices and Tables


	Index

	Module Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Modules

This is the list of modules that Watch Do makes use of. All modules are
documented to make it easy to integrate within your own project.


Contents:


	Watchers
	The Base Class

	Built-In Watchers





	Doers
	The Base Class

	Built-In Doers





	Doer Manager

	Watcher Manager

	Glob Manager

	Banner Builder

	Exceptions









          

      

      

    

  

    
      
          
            
  
Watchers

Watchers implement methods of determining if a file has changed.

All watchers inherit from the base Watcher class. This allows the
derived class to focus on performing the change detection rather than having to
implement core functionality.


The Base Class

The Watcher base class is responsible for providing the high level
interface to a watcher, the actual functionality is left to the derived class.

The watchers are typically created and managed by an instance of a
WatcherManager class.


Warning

This class cannot be instantiated directly, it is an abstract base class.
Only derived classes that inherit from this class and implement
_get_value() can be instantiated.




	
class watch_do.watchers.watcher.Watcher(file_name)

	This is the base Watcher that all other watchers should
inherit from.

A file name is passed in that will be monitored for changes.


Note

The file state is only checked when the has_changed() method is
called.



Initialise the Watcher.





	Parameters:	file_name (str) – The file path that the watcher should detect
changes for.






	
_get_value()

	Get the current value of the watched file.


Attention

This method should be overwritten and implemented in child classes.



This method determines the current change value of the file being
watched. This could be the file’s hash, the modified time, or some
other value that can be used to determine if we should report the file
as changed on the next call to has_changed().





	Returns:	A value representing the current state of the object that this
base class can use to determine if the file has changed.


	Return type:	str










	
file_name

	Get the name and path of the file that this watcher is monitoring.






	
has_changed()

	Determine if the file has changed since the last call to this
method.


Warning

The first call to this method will always return False.







	Returns:	A boolean, indicating if the watched file has changed.


	Return type:	bool
















Built-In Watchers

These are the built-in watchers that were available for use at the time this
documentation was built.


Note

The watchers below all inherit from the above Watcher class. This
means that all methods and properites detailed above are also available on
these classes below even though they aren’t mentioned.




	
class watch_do.watchers.MD5(file_name)

	MD5 hash based change detection.

This class uses MD5 hashes based on the files contents to enable change
detection.

Initialise the Watcher.





	Parameters:	file_name (str) – The file path that the watcher should detect
changes for.










	
class watch_do.watchers.ModificationTime(file_name)

	A modification time based watcher.

This class uses the files modification time to enable change detection.

Initialise the Watcher.





	Parameters:	file_name (str) – The file path that the watcher should detect
changes for.















          

      

      

    

  

    
      
          
            
  
Doers

Doers implement interfaces that enable the performing of actions.

All doers inherit from the base Doer class. This allows the derived
class to focus on actually executing the action rather than having to implement
core functionality.


The Base Class

The Doer base class is responsible for providing the high level
interface to a doer, the actual functionality is left to the derived class.

The doers are typically created and managed by an instance of a
DoerManager class.


Warning

This class cannot be instantiated directly, it is an abstract base class.
Only derived classes that inherit from this class and implement
run() can be instantiated.




	
class watch_do.doers.doer.Doer(command)

	This is the base Doer that all other doers should inherit
from.

A command is passed in that will determine the action that should be
performed.

Initialise the Doer.





	Parameters:	command (str) – The command that details what action should be
performed.






	
static _interpolate_file_name(string, file_name)

	Interpolate the file_name into a given string.

The string parameter will be searched for %f and replaced with
file_name. Any escaped %f‘s will be unescaped and ignored (i.e.
\%f becomes %f).





	Parameters:	
	string (str) – The string to interpolate the file_name into.

	file_name (str) – The file name to insert into the string.






	Returns:	The input string with file name interpolated.




	Return type:	str












	
command

	Get the command this doer is performing.






	
run(file_name)

	Run the doer against a specific file.

This method runs the command passed into the constructor against a
specific file.





	Parameters:	file_name (str) – The file name to run this doer against.




	Yields:	str –


	A string containing the output (possibly the partial output)

	of the command, both stdout and stderr.






















Built-In Doers

These are the built-in doers that were available for use at the time this
documentation was built.


Note

The doers below all inherit from the above Doer class. This
means that all methods and properites detailed above are also available on
these classes below even though they aren’t mentioned.



The Shell class provides a method to run shell commands and
capture their output.

As an example, the following code would provide a method of getting the output
from listing a specific files attributes on the command line.

>>> doer = Shell('ls -lh "%f"')





To actually run and retrieve the output of this command, the run() method
should be called.

>>> doer.run('myfile.txt')






	
class watch_do.doers.shell.Shell(command)

	Interface with a shell to allow running standard shell commands.

This doer enables commands to be run in a shell and have the output
captured.

Initialise the Doer.





	Parameters:	command (str) – The command that details what action should be
performed.






	
run(file_name)

	Run the command in the shell.

The _interpolate_file_name() is called on the command with
file_name as a parameter to ensure this file_name is
interpolated if it’s required.





	Parameters:	file_name (str) – The file_name that this doer should run
against.




	Yields:	str –


	A string containing the output (possibly the partial output)

	of the command, both stdout and stderr.

























          

      

      

    

  

    
      
          
            
  
Doer Manager

The DoerManager class is responsible for orchestrating the doers.

Commands for the different types of doers, for example the Shell
doer, are provided to this class, which are then parsed and converted to their
respective doer instances. The default doer is also taken into account for
commands that don’t explicitly specify a doer.

As an example, the following code would parse out the command specified as the
first argument and create a Shell doer from it.

>>> manager = DoerManager(['shell:echo "%f changed!"'], Shell)





In the above case, the shell: prefix wasn’t necessary, as the default doer
(the second argument) was already set to Shell.

All of the doers can be run by calling the run_doers() method.

>>> manager.run_doers('my_file.txt')






	
class watch_do.doer_manager.DoerManager(commands, default_doer)

	This class creates and manages doers.

Commands are passed in, which then get parsed and converted to instances
of doers. All doers can be run using the run_doers() method with
relevant output returned.

Initialise the DoerManager and parse all commands.

The commands that get passed into this class are parsed (removing their
doer: prefix if required) and have the relevant doer instances
created for them.





	Parameters:	
	commands (list) – A list of strings containing the commands to
create doers for. Each command (str) in the list of commands
should be prefixed with doer:, where ‘doer’ is the name of
the doer (i.e.  shell). If the command is not prefixed with
doer: the default_doer will be used.

	default_doer (Doer) – A reference to a doer class to use
as the default doer if one is not explicitly specified using
the doer: prefix.










	
commands

	list – The list of stings that this DoerManager is
managing.






	
default_doer

	Doer – The doer that is used if one is explicitly specified
in the command.






	
doers

	list – The doers that were created as a result of passing the
commands.






	
run_doers(file_name)

	Run each doer in turn and yield its output.





	Yields:	str –


	A string that contains the combined output of stdout and

	stderr from the doers.























          

      

      

    

  

    
      
          
            
  
Watcher Manager

The WatcherManager class is responsible for orchestrating the
watchers.

The watchers are created based on the files returned by the
GlobManager instance that get provided to this class. For each file
that the GlobManager returns a new Watcher is created.
Multiple options can be provided to this class that allows for some
configuration, please see the __init__() method documentation for
details.

As an example, the following code would set up watchers for all files returned
by glob_manager using the ModificationTime method. Newly created
files are detected and added to the watch list and files that get deleted are
considered to be a change (this is specified as the last two parameters of the
constructor).

>>> manager = WatcherManager(
...     ModificationTime, glob_manager, True, True)





All of the changed files can be retrieved by calling get_changed_files().

>>> manager.get_changed_files()






	
class watch_do.watcher_manager.WatcherManager(watcher, glob_manager, reglob, changed_on_remove)

	This class creates and manages watchers.

A Watcher and an instance of GlobManager are passed in,
which provides the necessary information for the class to create the
required watchers that can be used to detect changes.

Initialise the WatcherManager.





	Parameters:	
	watcher (Watcher) – A reference to a subclass of
Watcher (i.e. ModificationTime) that will
be used watch the files provided by the GlobManager.

	glob_manager (GlobManager) – The glob manager responsible
for providing a list of files.

	reglob (bool) – A boolean value indicating whether to re-evaluate
globs when get_changed_files() is called.

	changed_on_remove (bool) – A boolean value indicating whether to
consider the removal of a file a change.










	
changed_on_remove

	bool – A boolean value indicating if removed files count as a change.






	
files

	set – The set of file names (relative to the current directory)
that are being watched.






	
get_changed_files()

	Get a set containing the changed files since the last call.

This method determines which files have changed since the last time
this method was called. Added files, changed files (determined by the
type of watcher) and removed files (if changed_on_remove is True) are
all counted as changed files.

The watchers are stored and managed internally to this class.





	Returns:	A set of files that have changed since the last time this
method was called.


	Return type:	set










	
glob_manager

	GlobManager – The instance of the GlobManager
that was passed in.






	
reglob

	bool – A boolean value indicating whether we are re-evaluating file
globs each time get_changed_files() is called.






	
watcher

	Watcher – A reference to the Watcher class that
is being used to detect changes.













          

      

      

    

  

    
      
          
            
  
Glob Manager

The GlobManager is responsible for expanding globs and ensuring
that only files are returned.

Multiple globs can be passed in to the class, these are then expanded and
matching files (no directories) are returned.

As an example, the following code would set up a GlobManager class
that would find all files ending in .py.

>>> manager = GlobManager(['**/*.py'])





To actually get the files matching the specified globs the get_files()
method can be called:

>>> manager.get_files()






	
class watch_do.glob_manager.GlobManager(globs)

	This class expands the globs that are provided to it.

Multiple globs can be specified in order to watch a multitude of files.

Initialise the GlobManager.





	Parameters:	globs (list) – A list of globs (as strings) that this class will
expand.






	
get_files()

	Expand the globs and return a set of matching files.





	Returns:	A set of strings containing the files that matched the
globs passed into this class.


	Return type:	set










	
globs

	set – A set of globs that were passed into this class.






	
last_files

	set – The set of files last returned by the get_files()
method.













          

      

      

    

  

    
      
          
            
  
Banner Builder

The BannerBuilder class is responsible for creating the banners
that are displayed when using the command line interface to Watch Do.

Headers and footers are created in a format defined within this class that make
use of the metadata that is passed into the build_header() and
build_footer() methods.

As an example, the following code would return a header populated with the
required metadata.

>>> BannerBuilder.build_header(
...     {'file1', 'file2'}, ModificationTime)






	
class watch_do.banner_builder.BannerBuilder

	This class creates the headers and footers (banners) containing metrics
that are used predominantly by the command line interface.


	
static build_footer(trigger_time, trigger_cause, doer_run_time, files, watch_method)

	Build the footer from the provided metadata.

This interpolates the metadata provided by the parameters into a
predefined string that can be used as information to display after
a change has occurred.





	Parameters:	
	trigger_time (int) – A timestamp of when the doers were triggered.

	trigger_cause (list) – A list of items that caused the doers to
run. This list is joined with ‘, ‘ and the second to last and
last item joined with ‘ and ‘.

	doer_run_time (double) – The duration of time the doers took to run.

	files (set) – A set containing the files that are currently
being watched.

	watch_method (Watcher) – A reference to the class that is
being used to watch the files.






	Returns:	A string containing the generated footer.




	Return type:	str












	
static build_header(files, watch_method)

	Build a header from the provided metadata.

This interpolates the metadata provided by the parameters into a
predefined string that can be used as information to display before
a change has occurred.





	Parameters:	
	files (set) – A set containing the files that are currently
being watched.

	watch_method (Watcher) – A reference to the class that is
being used to watch the files.






	Returns:	A string containing the generated header.




	Return type:	str



















          

      

      

    

  

    
      
          
            
  
Exceptions

The exceptions defined in this module are used within the Watch Do package
for reporting different error conditions.

None of the exceptions contain any extra logic, data or functionality, they
only to provide a means to handle specific types of error.


	
exception watch_do.exceptions.UnknownDoer

	This can be raised when a Doer cannot be found.






	
exception watch_do.exceptions.UnknownWatcher

	This can be raised when a Watcher cannot be found.









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   w
   


   
     		 	

     		
       w	

     
       	[image: -]
       	
       watch_do	
       

     
       	
       	   
       watch_do.banner_builder	
       

     
       	
       	   
       watch_do.doer_manager	
       

     
       	
       	   
       watch_do.doers	
       

     
       	
       	   
       watch_do.doers.doer	
       

     
       	
       	   
       watch_do.doers.shell	
       

     
       	
       	   
       watch_do.exceptions	
       

     
       	
       	   
       watch_do.glob_manager	
       

     
       	
       	   
       watch_do.watcher_manager	
       

     
       	
       	   
       watch_do.watchers	
       

     
       	
       	   
       watch_do.watchers.watcher	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | B
 | C
 | D
 | F
 | G
 | H
 | L
 | M
 | R
 | S
 | U
 | W
 


_


  	
      	_get_value() (watch_do.watchers.watcher.Watcher method)


  

  	
      	_interpolate_file_name() (watch_do.doers.doer.Doer static method)


  





B


  	
      	BannerBuilder (class in watch_do.banner_builder)


  

  	
      	build_footer() (watch_do.banner_builder.BannerBuilder static method)


      	build_header() (watch_do.banner_builder.BannerBuilder static method)


  





C


  	
      	changed_on_remove (watch_do.watcher_manager.WatcherManager attribute)


  

  	
      	command (watch_do.doers.doer.Doer attribute)


      	commands (watch_do.doer_manager.DoerManager attribute)


  





D


  	
      	default_doer (watch_do.doer_manager.DoerManager attribute)


      	Doer (class in watch_do.doers.doer)


  

  	
      	DoerManager (class in watch_do.doer_manager)


      	doers (watch_do.doer_manager.DoerManager attribute)


  





F


  	
      	file_name (watch_do.watchers.watcher.Watcher attribute)


  

  	
      	files (watch_do.watcher_manager.WatcherManager attribute)


  





G


  	
      	get_changed_files() (watch_do.watcher_manager.WatcherManager method)


      	get_files() (watch_do.glob_manager.GlobManager method)


  

  	
      	glob_manager (watch_do.watcher_manager.WatcherManager attribute)


      	GlobManager (class in watch_do.glob_manager)


      	globs (watch_do.glob_manager.GlobManager attribute)


  





H


  	
      	has_changed() (watch_do.watchers.watcher.Watcher method)


  





L


  	
      	last_files (watch_do.glob_manager.GlobManager attribute)


  





M


  	
      	MD5 (class in watch_do.watchers)


  

  	
      	ModificationTime (class in watch_do.watchers)


  





R


  	
      	reglob (watch_do.watcher_manager.WatcherManager attribute)


      	run() (watch_do.doers.doer.Doer method)

      
        	(watch_do.doers.shell.Shell method)


      


  

  	
      	run_doers() (watch_do.doer_manager.DoerManager method)


  





S


  	
      	Shell (class in watch_do.doers.shell)


  





U


  	
      	UnknownDoer


  

  	
      	UnknownWatcher


  





W


  	
      	watch_do.banner_builder (module)


      	watch_do.doer_manager (module)


      	watch_do.doers (module)


      	watch_do.doers.doer (module)


      	watch_do.doers.shell (module)


      	watch_do.exceptions (module)


  

  	
      	watch_do.glob_manager (module)


      	watch_do.watcher_manager (module)


      	watch_do.watchers (module)


      	watch_do.watchers.watcher (module)


      	Watcher (class in watch_do.watchers.watcher)


      	watcher (watch_do.watcher_manager.WatcherManager attribute)


      	WatcherManager (class in watch_do.watcher_manager)


  







          

      

      

    

  _static/up.png





_static/comment-bright.png





_static/plus.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		Watch Do (1.1.2)


        		Modules
          
          		Watchers
            
            		The Base Class


            		Built-In Watchers


            


          


          		Doers
            
            		The Base Class


            		Built-In Doers


            


          


          		Doer Manager


          		Watcher Manager


          		Glob Manager


          		Banner Builder


          		Exceptions


          


        


      


    
  

_static/down-pressed.png





_static/up-pressed.png





_static/down.png





_static/comment.png





